Application of the Electrostatically Embedded Many-Body Expansion to Microsolvation of Ammonia in Water Clusters.
نویسندگان
چکیده
The electrostatically embedded many-body expansion (EE-MB), at both the second and third order, that is, the electrostatically embedded pairwise additive (EE-PA) approximation and the electrostatically embedded three-body (EE-3B) approximation, are tested for mixed ammonia-water clusters. We examine tetramers, pentamers, and hexamers for three different density functionals and two levels of wave function theory, We compare the many-body results to the results of full calculations performed without many-body expansions. Because of the differing charge distributions in the two kinds of monomers, this provides a different kind of test of the usefulness of the EE-MB method than was provided by previous tests on pure water clusters. We find only small errors due to the truncation of the many-body expansion for the mixed clusters. In particular, for tests on tetramers and pentamers, the mean absolute deviations for truncation at second order are 0.36-0.98 kcal/mol (average: 0.66 kcal/mol), and the mean absolute deviations for truncation at third order are 0.04-0.28 (average: 0.16 kcal/mol). These may be compared to a spread of energies as large as 4.24 kcal/mol in the relative energies of various structures of pentamers and to deviations of up to 8.57 kcal/mol of the full calculations of relative energies from the best estimates of the relative energies. When the methods are tested on hexamers, the mean unsigned deviation per monomer remains below 0.10 kcal/mol for EE-PA and below 0.03 kcal/mol for EE-3B. Thus the additional error due to the truncation of the expansion is small compared to the accuracy needed or the other approximations involved in practical calculations. This means that the EE-MB expansion in combination with density functional theory or wave function theory for the oligomers provides a useful practical model chemistry for making electronic structure calculations and simulations more affordable by improving the scaling with respect to system size.
منابع مشابه
Electrostatically Embedded Many-Body Correlation Energy, with Applications to the Calculation of Accurate Second-Order Møller-Plesset Perturbation Theory Energies for Large Water Clusters.
The electrostatically embedded many-body expansion (EE-MB), previously applied to the total electronic energy, is here applied only to the electronic correlation energy (CE), combined with a Hartree-Fock calculation on the entire system. The separate treatment of the Hartree-Fock and correlation energies provides an efficient way to approximate correlation energy for extended systems. We illust...
متن کاملElectrostatically Embedded Many-Body Expansion for Large Systems, with Applications to Water Clusters.
The use of background molecular charge to incorporate environmental effects on a molecule or active site is widely employed in quantum chemistry. In the present article we employ this practice in conjunction with many-body expansions. In particular, we present electrostatically embedded two-body and three-body expansions for calculating the energies of molecular clusters. The system is divided ...
متن کاملMicrosolvation of NO2+ in Helium: An Ab Initio Study on NO2+-Hen Clusters (n ≤ 7)
In this study, the interaction between NO2+ cation and Hen (n = 1-7) clusters is investigated by means of ab initio calculations at MP2/aug-cc-pVTZ and QCISD/aug-cc-pVTZ computational levels. The first and second solvation shells were obtained while N atom of NO2+ interacts with five and two He atoms, respectively. Stabilizat...
متن کاملA STUDY OF SMALL VACANCY CLUSTERS IN IRON USING MANY BODY POTENTIAL
Computer simulation techniques are employed to obtain binding energies of 2,3 and 4 vacancy clusters in a -iron using the Finnis Sinclair many body potential. The results are compared with earlier pair potential calculations. The many body potential is found to be quite successful in simulating vacancy clusters
متن کاملAnalysis and Simulation of the Effect of Turbine Inlet Temperature on Thermodynamic Performance of the Water – Ammonia Combined Cycle
Due to the importance of power generation cycles including combined cycle, many studies have been done in recent years and many researchers have been tried to optimize these cycles by using of existing methods. In this study, the Water-Ammonia cycle is investigated in the combined-cycle of the Water-Ammonia, working dual Water-Ammonia mixture is used as the works fluid. This cycle can be used f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of chemical theory and computation
دوره 4 5 شماره
صفحات -
تاریخ انتشار 2008